
Background Motivation Approach Contributions Future Work Acknowledgement

A Parameterized Framework for the Formal
Verification of Zero-Knowledge Virtual Machines

Youwei Zhong

Shanghai Jiao Tong University

October 30, 2024

https://ywzh.org/


Background Motivation Approach Contributions Future Work Acknowledgement

Table of Contents

1 Background

2 Motivation

3 Approach

4 Contributions

5 Future Work

6 Acknowledgement



Background Motivation Approach Contributions Future Work Acknowledgement

What are zkVMs?

Zero-Knowledge Virtual Machine (zkVM): a kind of virtual
machine based on Zero-knowledge Proof (ZKP) that allows for
verifiable computation.



Background Motivation Approach Contributions Future Work Acknowledgement

What are zkVMs?

Zero-Knowledge Virtual Machine (zkVM): a kind of virtual
machine based on Zero-knowledge Proof (ZKP) that allows for
verifiable computation.



Background Motivation Approach Contributions Future Work Acknowledgement

What is a ZKP?

Zero-knowledge proofs allow one party (Prover) convince another
party (Verifier) that some given statement is true, without
revealing anything beyond the mere fact of that statement’s truth.



Background Motivation Approach Contributions Future Work Acknowledgement

Example: What is a ZKP?

Figure: Example of convincing the Verifier the hash value of some files



Background Motivation Approach Contributions Future Work Acknowledgement

Example: What are zkVMs?

Figure: Example of a zkVM



Background Motivation Approach Contributions Future Work Acknowledgement

What are zkVMs?

A zkVM is a ‘virtual machine’ that can generate a proof for the
correct execution of arbitrary programs without revealing anything
beyond the mere fact of the program and the public input.



Background Motivation Approach Contributions Future Work Acknowledgement

What is the workflow of zkVMs?

Figure: Front end of a zkVM



Background Motivation Approach Contributions Future Work Acknowledgement

What is the workflow of zkVMs?

Figure: Front end of a zkVM



Background Motivation Approach Contributions Future Work Acknowledgement

What is the workflow of zkVMs?

Figure: Front end of a zkVM



Background Motivation Approach Contributions Future Work Acknowledgement

What is the workflow of zkVMs?

Figure: Front end of a zkVM



Background Motivation Approach Contributions Future Work Acknowledgement

What is the workflow of zkVMs?

Figure: Workflow of a zkVM



Background Motivation Approach Contributions Future Work Acknowledgement

What is the workflow of zkVMs?

Figure: Workflow of a zkVM



Background Motivation Approach Contributions Future Work Acknowledgement

What is the workflow of zkVMs?

Figure: Workflow of a zkVM



Background Motivation Approach Contributions Future Work Acknowledgement

Why zkVMs use this contraint generation algorithm?

To make ZKP succinct!

How? The algorithm separates CPU states from the random
accessible data (like memory, or a very large stack).



Background Motivation Approach Contributions Future Work Acknowledgement

Why zkVMs use this contraint generation algorithm?

To make ZKP succinct!

How? The algorithm separates CPU states from the random
accessible data (like memory, or a very large stack).



Background Motivation Approach Contributions Future Work Acknowledgement

Example: contraint generation algorithm

Figure: Machine code program



Background Motivation Approach Contributions Future Work Acknowledgement

Example: contraint generation algorithm

Figure: Example: How does the contraint generation algorithm work?



Background Motivation Approach Contributions Future Work Acknowledgement

Why succinctness matters?

Zero-knowledge is not all that matters in the application of
zkVMs.

One of the most famous zkVM: zkEVM (Zero-Knowledge
Ethereum Virtual Machine)

To avoid extra energy cost of rerunning previous smart
contracts on the blockchain, zkEVM put ZKPs of smart
contract programs on the Ethereum blockchain instead.



Background Motivation Approach Contributions Future Work Acknowledgement

Why succinctness matters?

Zero-knowledge is not all that matters in the application of
zkVMs.

One of the most famous zkVM: zkEVM (Zero-Knowledge
Ethereum Virtual Machine)

To avoid extra energy cost of rerunning previous smart
contracts on the blockchain, zkEVM put ZKPs of smart
contract programs on the Ethereum blockchain instead.



Background Motivation Approach Contributions Future Work Acknowledgement

Why succinctness matters?

Zero-knowledge is not all that matters in the application of
zkVMs.

One of the most famous zkVM: zkEVM (Zero-Knowledge
Ethereum Virtual Machine)

To avoid extra energy cost of rerunning previous smart
contracts on the blockchain, zkEVM put ZKPs of smart
contract programs on the Ethereum blockchain instead.



Background Motivation Approach Contributions Future Work Acknowledgement

Motivation

Why do we verify zkVMs?

Which properties of zkVMs do we want to verify?

Why do we want to verify these properties?



Background Motivation Approach Contributions Future Work Acknowledgement

Motivation

Why do we verify zkVMs?

Which properties of zkVMs do we want to verify?

Why do we want to verify these properties?



Background Motivation Approach Contributions Future Work Acknowledgement

Motivation

Why do we verify zkVMs?

Which properties of zkVMs do we want to verify?

Why do we want to verify these properties?



Background Motivation Approach Contributions Future Work Acknowledgement

Why zkVMs? Which properties?

The main purpose of zkVMs is verifiable computation.

Privacy is actually the extra (not necessary) feature of zkEVM.



Background Motivation Approach Contributions Future Work Acknowledgement

Why zkVMs? Which properties?

The main purpose of zkVMs is verifiable computation.

Privacy is actually the extra (not necessary) feature of zkEVM.



Background Motivation Approach Contributions Future Work Acknowledgement

Recap: example of zkVMs

Figure: Example of a zkVM



Background Motivation Approach Contributions Future Work Acknowledgement

When we say verifiable computation...

’An honest Prover’s proof can always pass the Verifier’s
check.’

’A malicious prover’s proof should be declined with high
probability.’



Background Motivation Approach Contributions Future Work Acknowledgement

When we say verifiable computation...

’An honest Prover’s proof can always pass the Verifier’s
check.’

’A malicious prover’s proof should be declined with high
probability.’



Background Motivation Approach Contributions Future Work Acknowledgement

Which properties of zkVMs do we want to verify?

Completeness: ’An honest Prover’s proof can always pass the
Verifier’s check.’

Soundness: ’A malicious Prover’s proof should be declined
with high probability.’



Background Motivation Approach Contributions Future Work Acknowledgement

Which properties of zkVMs do we want to verify?

Completeness: ’An honest Prover’s proof can always pass the
Verifier’s check.’

Soundness: ’A malicious Prover’s proof should be declined
with high probability.’



Background Motivation Approach Contributions Future Work Acknowledgement

Why do we verify zkVMs and these properties?

Current zkVMs are susceptible to bugs and vulnerabilities.

Example: A severe bug in Aztec VM’s verifier breaks
soundness, resulting in millions of dollars worth of
cryptocurrency getting stolen!1.

1Michael Connor, Jonathan Wu, and Ariel. Disclosure of recent vulnerabilities - HackMD. [Online; accessed 23.
Apr. 2024]. Apr. 2024. url: https://hackmd.io/@aztec-network/disclosure-of-recent-vulnerabilities.

https://hackmd.io/@aztec-network/disclosure-of-recent-vulnerabilities


Background Motivation Approach Contributions Future Work Acknowledgement

Why do we verify zkVMs and these properties?

Current zkVMs are susceptible to bugs and vulnerabilities.

Example: A severe bug in Aztec VM’s verifier breaks
soundness, resulting in millions of dollars worth of
cryptocurrency getting stolen!1.

1Connor, Wu, and Ariel, Disclosure of recent vulnerabilities - HackMD.



Background Motivation Approach Contributions Future Work Acknowledgement

Our ultimate goal

End-to-end formal verification of zkVMs!

We start with verifying one common phase of all zkVMs, the
constraint generation algorithm.



Background Motivation Approach Contributions Future Work Acknowledgement

Our ultimate goal

End-to-end formal verification of zkVMs!

We start with verifying one common phase of all zkVMs, the
constraint generation algorithm.



Background Motivation Approach Contributions Future Work Acknowledgement

Typical zkVMs

The table below displays the differences and similarities among
four typical zkVMs2, they all follow the proof generation workflow
defined before, and share the same constraint generation algorithm.

Aspect PSE zkEVM Cairo VM ZKWASM Miden VM

Machine Type Stack Machine Register Machine Stack Machine Stack Machine
Instruction Set EVM Bytecode Cairo Assembly (CASM) WebAssembly (WASM) Miden Assembly
Memory Model Random Access Memory Read-only Memory Random Access Memory Random Access Memory

Built-in field elements No Yes No Yes

2Pérez Carlos et al. zkEVM Community Edition - Privacy & Scaling Explorations. [Online; accessed 21. Mar.
2024]. Mar. 2024. url: https://pse.dev/en/projects/zkevm-community; Lior Goldberg, Shahar Papini, and
Michael Riabzev. Cairo – a Turing-complete STARK-friendly CPU architecture. Cryptology ePrint Archive, Paper
2021/1063. https://eprint.iacr.org/2021/1063. 2021. url: https://eprint.iacr.org/2021/1063;
Sinka Gao et al. “ZAWA: A ZKSNARK WASM Emulator”. working paper or preprint. Mar. 2023. url:
https://hal.science/hal-03995514; Bobbin Threadbare et al. miden-vm. [Online; accessed 23. Apr. 2024].
Apr. 2024. url: https://github.com/0xPolygonMiden/miden-vm.

https://pse.dev/en/projects/zkevm-community
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2021/1063
https://hal.science/hal-03995514
https://github.com/0xPolygonMiden/miden-vm


Background Motivation Approach Contributions Future Work Acknowledgement

Previous work: Aleo3 (Not Open Source)

Need to verify the proof produced by the compiler each time
it runs a program.

Aleo’s front-end language, Leo, is Turing-incomplete.

Hard-coded: targeted towards specific high-level languages
and instruction set.

3Alessandro Coglio et al. Compositional Formal Verification of Zero-Knowledge Circuits. Cryptology ePrint
Archive, Paper 2023/1278. https://eprint.iacr.org/2023/1278. 2023. url:
https://eprint.iacr.org/2023/1278.

https://eprint.iacr.org/2023/1278
https://eprint.iacr.org/2023/1278


Background Motivation Approach Contributions Future Work Acknowledgement

Previous work: Aleo3 (Not Open Source)

Need to verify the proof produced by the compiler each time
it runs a program.

Aleo’s front-end language, Leo, is Turing-incomplete.

Hard-coded: targeted towards specific high-level languages
and instruction set.

3Coglio et al., Compositional Formal Verification of Zero-Knowledge Circuits.



Background Motivation Approach Contributions Future Work Acknowledgement

Previous work: Aleo3 (Not Open Source)

Need to verify the proof produced by the compiler each time
it runs a program.

Aleo’s front-end language, Leo, is Turing-incomplete.

Hard-coded: targeted towards specific high-level languages
and instruction set.

3Coglio et al., Compositional Formal Verification of Zero-Knowledge Circuits.



Background Motivation Approach Contributions Future Work Acknowledgement

Previous work: Cairo4 (Open Source)

Only have soundness proof.

Also hard-coded.

Read-only memory.

4Jeremy Avigad et al. “A Proof-Producing Compiler for Blockchain Applications”. In: 14th International
Conference on Interactive Theorem Proving (ITP 2023). Ed. by Adam Naumowicz and René Thiemann. Vol. 268.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023, 7:1–7:19. isbn: 978-3-95977-284-6. doi: 10.4230/LIPIcs.ITP.2023.7. url:
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.7; Jeremy Avigad et al. “A
verified algebraic representation of cairo program execution”. In: Proceedings of the 11th ACM SIGPLAN
International Conference on Certified Programs and Proofs. CPP 2022. Philadelphia, PA, USA: Association for
Computing Machinery, 2022, pp. 153–165. isbn: 9781450391825. doi: 10.1145/3497775.3503675. url:
https://doi.org/10.1145/3497775.3503675.

https://doi.org/10.4230/LIPIcs.ITP.2023.7
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.7
https://doi.org/10.1145/3497775.3503675
https://doi.org/10.1145/3497775.3503675


Background Motivation Approach Contributions Future Work Acknowledgement

Previous work: Cairo4 (Open Source)

Only have soundness proof.

Also hard-coded.

Read-only memory.

4Avigad et al., “A Proof-Producing Compiler for Blockchain Applications”; Avigad et al., “A verified algebraic
representation of cairo program execution”.



Background Motivation Approach Contributions Future Work Acknowledgement

Previous work: Cairo4 (Open Source)

Only have soundness proof.

Also hard-coded.

Read-only memory.

4Avigad et al., “A Proof-Producing Compiler for Blockchain Applications”; Avigad et al., “A verified algebraic
representation of cairo program execution”.



Background Motivation Approach Contributions Future Work Acknowledgement

Summary for previous works

Need to prove soundness and completeness for every change
of the zkVM.

Proof not directly portable to other zkVMs.



Background Motivation Approach Contributions Future Work Acknowledgement

Summary for previous works

Need to prove soundness and completeness for every change
of the zkVM.

Proof not directly portable to other zkVMs.



Background Motivation Approach Contributions Future Work Acknowledgement

What did we do?

We parameterize the ISA (Instruction Set Architecture), and
define semantics-level constraints based on these
parameterized definitions.

Then, we verify the parameterized constraint generation
algorithm.

Two instantiation examples: Cairo VM and a simplified
zkEVM.



Background Motivation Approach Contributions Future Work Acknowledgement

What did we do?

We parameterize the ISA (Instruction Set Architecture), and
define semantics-level constraints based on these
parameterized definitions.

Then, we verify the parameterized constraint generation
algorithm.

Two instantiation examples: Cairo VM and a simplified
zkEVM.



Background Motivation Approach Contributions Future Work Acknowledgement

What did we do?

We parameterize the ISA (Instruction Set Architecture), and
define semantics-level constraints based on these
parameterized definitions.

Then, we verify the parameterized constraint generation
algorithm.

Two instantiation examples: Cairo VM and a simplified
zkEVM.



Background Motivation Approach Contributions Future Work Acknowledgement

Instantiation example

The figure below shows the instantiation of a simplified zkEVM:

Parameterized 
machine state

Instantiation of 
machine state

Parameterized 
instruction set

A subset of EVM 
bytecode

CPU

random accessible
data

pc, two auxiliary 
registers, and sp

r/w records in 
memory and stack

An instantiation of 
a simplified zkEVM 
in our framework

Our parameterized 
framework

Parameterized 
semantics

Semantics of EVM 
bytecode

Figure: An instantiation in our parameterized framework



Background Motivation Approach Contributions Future Work Acknowledgement

Features

Verification of the front end and the back end are decoupled.

Different zkVMs can share the same proof.

Proofs can be reused, reducing repetitive code.



Background Motivation Approach Contributions Future Work Acknowledgement

Features

Verification of the front end and the back end are decoupled.

Different zkVMs can share the same proof.

Proofs can be reused, reducing repetitive code.



Background Motivation Approach Contributions Future Work Acknowledgement

Features

Verification of the front end and the back end are decoupled.

Different zkVMs can share the same proof.

Proofs can be reused, reducing repetitive code.



Background Motivation Approach Contributions Future Work Acknowledgement

Evaluation

The parameterized proof of soundness and completeness contains
about 3800 and 2980 lines of code respectively.

Figure: Comparison of verifying Cairo VM



Background Motivation Approach Contributions Future Work Acknowledgement

Recap: soundness and completeness

Completeness: ’An honest Prover’s proof can always pass the
Verifier’s check.’

Soundness: ’A malicious Prover’s proof should be declined
with high probability.’

Does the correctness of the constraint generation algorithm
induce the maintenance of completeness and soundness?



Background Motivation Approach Contributions Future Work Acknowledgement

Recap: soundness and completeness

Completeness: ’An honest Prover’s proof can always pass the
Verifier’s check.’

Soundness: ’A malicious Prover’s proof should be declined
with high probability.’

Does the correctness of the constraint generation algorithm
induce the maintenance of completeness and soundness?



Background Motivation Approach Contributions Future Work Acknowledgement

Maintenance of completeness and soundness

Suppose we have the completeness and soundness of the back end:

Figure: Back end of zkVMs



Background Motivation Approach Contributions Future Work Acknowledgement

Maintenance of completeness and soundness

Suppose we have the completeness and soundness of the back end,
which means:

Figure: Existence of a ZKP system for semantics-level constraints



Background Motivation Approach Contributions Future Work Acknowledgement

Maintenance of completeness and soundness

Correctness of the constraint generation algorithm should induce
the existence of the following ZKP system:

Figure: Existence of a ZKP system for the execution trace



Background Motivation Approach Contributions Future Work Acknowledgement

Maintenance of completeness and soundness

We formalize the soundness and completeness of ZKP
systems.

We prove that the correctness of the constraint generation
algorithm induces the maintenance of soundness and
completeness.



Background Motivation Approach Contributions Future Work Acknowledgement

Contributions

We are the first to put forward a parameterized framework for
the formal verification of zkVMs.

We are the first to to formalize the cryptographic security
properties of zkVMs, including soundness and completeness.



Background Motivation Approach Contributions Future Work Acknowledgement

Contributions

We are the first to put forward a parameterized framework for
the formal verification of zkVMs.

We are the first to to formalize the cryptographic security
properties of zkVMs, including soundness and completeness.



Background Motivation Approach Contributions Future Work Acknowledgement

Future Work

Verify maintenance of zero-knowledge and knowledge
soundness during the transformation using the constraint
generation algorithm.

Verify the back end of zkVMs.



Background Motivation Approach Contributions Future Work Acknowledgement

Future Work

Verify maintenance of zero-knowledge and knowledge
soundness during the transformation using the constraint
generation algorithm.

Verify the back end of zkVMs.



Background Motivation Approach Contributions Future Work Acknowledgement

Acknowledgement

Supervised by Qinxiang Cao (caoqinxiang@sjtu.edu.cn) and
Yuncong Hu (huyuncong@sjtu.edu.cn).

Funded by Ethereum Foundation FY24-1541.


	Background
	Motivation
	Approach
	Contributions
	Future Work
	Acknowledgement

