/_f"“\

(@) Sivcnn Jino Tons A Parameterized Framework for the Supervised by Qinxiang Cao

.-|:II

and Yuncong Hu

Youwei Zhong @ SPLASH SRC 2024 Formal Verification of Zero-Knowledge Virtual Machines caoginxiang @sjtu.edu.cn

zhongyouwei@sjtu.edu.cn huyuncong@sjtu.edu.cn

An instantiation of a

Zero-knowledge proof (ZKP) | know an m such that Approach Our parameterized simplified ZKEVM

framework)
in our framework

SHA256(m)=101101...

Zero-knowledge proofs allow one party e We parameterize the ISA (Instruction Set Architecture), =~ ==-5--==-=====-

. . po Parameterized : Instantiation of
(prover) convince another party (verifier) and define semantics-level constraints based on these machine state : machine state
that some given statement is true, without Proof oarameterized definitions. !

revealing anything beyond the mere fact of

pc, two auxiliary registers,
sp

<« -

CPU —L—

| will show you the existence of m

e Then, we verify the parameterized P
without letting you know m. random accessible data ——%

constraint generation algorithm. | memory and stack

Verifier piniaiuieleinleietuliilal

that statement's truth.
e Two instantiation examples: Cairo VM and a simplified zkEVM. | = - | AP
: - A subset of EVM bytecode

Zero-Knowledge Virtual Machine (zkVM):
a kind of virtual machine based on ZKP that allows for verifiable computation From correctness of the constraint generation algorithm SRR S

.y . L = F — 1 . | Parameterized : Semantics of
‘c’a"d 'I“P”t- afp =12 | Jw,s.t. F(z,w) =1} to the maintenance of soundness and completeness — semantics ; EVM bytecode
ompleteness:

'An honest prover's proof can always pass the verifier's check.’ F(x,w)=1

Prover

| know a w such that

x: program, public part of the initial state, initial pc & output(last state)
X: set of all valid RS

E The two auxiliary registers are used to store the top :
W prlvate IN put ' two values in the stack. In this way, the stack can be ,

(): private part of the initial state & a valid execution trace , seen as a part of the random accessible data (RAD), as
'is implemented in the PSE zkEVM.

()5: private part of the initial state & valid semantics-level constraints -

Ve € ap,Vw, Flz,w) =1 = Proof: 7

Pr[V(z,m)=1|m <+ P(z,w)| =1 | will show you the existence of w

without letting you know w.

Soundness: .. ®: proof space . . _
'A malicious prover's proof should be declined with high Prover Verifier FoXxQ {01} Correctness of the constraint generation algorithm:
probability.’ F: function F: function P:-XxQ—od Ve € X,Vws € Qg, Fy(z,w2) =1 = Fi(z,i21(z,w2))
VP*,Pr[a: ¢ ap A V(az,w) —1 (:c,7r) . P*] _ negl(|:c|) X: |r.1put X: Input V : X x ¢ —{0,1} Vo & X, le - Ql,Fl(a:,wl) =] — Fz(a:,zlz(a:,wl))
W: witness 112 1 X X Al — L)

i s X X Q0 5 Q) The maintenance of soundness and completeness:
If there is a pair of algorithms (P», V5), that satisfy soundness and completeness
_ verified in our framework! for the set ag,, there exists a corresponding pair of algorithms (P, V1), that satisfy

soundness and completeness for the set a ..
. Semantics-level Field-element Contribution
Machine Code

Source program . . Proof . . rea
Pros constraints constraints e First to put forward a parameterized framework for the formal verification of zkVMs.

Proof generation workflow of zkVMs
Front end

Constraint generation algorithm
8 8 Back end (Plonkish/Halo2, R1CS...)

|
|
: Features:
| o« o .
X] : . 1. Verification of the front end and the back end are decoupled.
Solidit ytecoae or i | * CPU constraints bbbttt . ,
et Y assembly code, : e Random accessible data | ! Some szMls su;llv 7; t;?e Cairo VM and Aleo VM, E 2. Different zkVMs can share the same proof.
’ . . ' support uilt-in field elements. : . .
. determined by | (RAD) constraints ' For these ZKVMs, semantics-level constraints are 3. Proofs can be reused, reducing repetitive code.
the ISA | e Permutation constraint ' already constraints on field-element constraints. E In SlghtS
I e e e e f e m e e e ;e e ;e e e, . e _,_ e — e ———m——————
v 1. Why we verify one phase?
Example RAD Constraints <----------; = Verification of different phases can be combined, which supports modular design of zkVMs.
program CPU constraints Random access records Sorted random access records 2. Why zkVMs share this phase?
' If address, == address; and op, == read, L ' _ ' , , ,
l.add || pc'==pc+1;r0'==r0+rl;rl'==rl no | imestam, > timestampy and value, = value; T m Different zkVMs share the same constraint generation algorithm.
B ! If not, add dd difop,==read, 1<~ : :
2.mstore|| pc ==pc+1;r0' ==r0; r1' == r1 timestamp: 1; op: write; address: r0; value: rl :faf/’je; et ;’/uerz]fj dzrr'esf;pz “%% + 1| * First to formalize the cryptographic security properties of zkVMs, including soundness and completeness.
—— o - o o o | Only two previous zkVMs verified: Cairo VM and Aleo VM (not open source).
.Ju pc'==r0; r0'==r0; rl' == no mestampq op; address; value, , _] _
s :| They do not realize the difference between maintenance of soundness and completeness and the
4 .mload pc'==pc+1;rl'==rl timestamp: 2; op: read; address: r0; value: rO' timestamp, op, address, value, correctness Of the constraint generation algorithm.
T ovoT Evaluation
Permutation Constraint The parameterized proof of soundness and completeness contains about 3800 and 2980 lines of code respectively.
Motivation ficati
. o FormacI:v.erlf\llclf/ltlon of Instantiation Soundness Completeness
e Current zkVMs are susceptible to bugs and vulnerabilities. alro
e.g. A severe bug in Aztec VM's verifier breaks soundness, resulting in millions of dollars worth of cryptocurrency getting stolen. Using our parameterized .
L e : : : : 1092 lines of Coq code No extra efforts! No extra efforts!
e Existing verification works on zkVMs are hard-coded to their memory settings and machine types, framework
which have two demerits: Not using our / 3266 lines of Lean code Not proved

1. It is hard to port them to other zkVMs. 2. The correctness proof is not reusable during development. parameterized framework

