
Source program Machine Code Seman�cs-level
constraints

Field-element
constraints Proof

Front end Back end (Plonkish/Halo2, R1CS...)

Zero-knowledge proof (ZKP)

Proof genera�on workflow of zkVMs

Mo�va�on

Approach

Contribu�on

Youwei Zhong @ SPLASH SRC 2024
zhongyouwei@sjtu.edu.cn

A Parameterized Framework for the Supervised by Qinxiang Cao
and Yuncong Hu
caoqinxiang@sjtu.edu.cn
huyuncong@sjtu.edu.cn

Formal Verifica�on of Zero-Knowledge Virtual Machines

Zero-knowledge proofs allow one party
(prover) convince another party (verifier)
that some given statement is true, without
revealing anything beyond the mere fact of
that statement's truth.

Prover Verifier

I know an m such that
SHA256(m)=101101...

Proof

F: func�on
x: input

w: witness

F: func�on
x: input

Valid input:
Completeness:
'An honest prover's proof can always pass the verifier's check.'

Soundness:
'A malicious prover's proof should be declined with high
probability.'

Zero-Knowledge Virtual Machine (zkVM):
a kind of virtual machine based on ZKP that allows for verifiable computa�on

Solidity,
Rust,
etc.

Bytecode or
assembly code,
determined by

the ISA

Prover Verifier

I know a w such that
F(x,w)=1

Proof:

Parameterized
machine state

Instan�a�on of
machine state

Parameterized
instruc�on set A subset of EVM bytecode

CPU

random accessible data

pc, two auxiliary registers,
sp

r/w records in
memory and stack

An instan�a�on of a
simplified zkEVM
in our framework

Parameterized
seman�cs

Seman�cs of
EVM bytecode

e.g. A severe bug in Aztec VM's verifier breaks soundness, resul�ng in millions of dollars worth of cryptocurrency ge�ng stolen.
Current zkVMs are suscep�ble to bugs and vulnerabili�es.

First to put forward a parameterized framework for the formal verifica�on of zkVMs.
Features:
1. Verifica�on of the front end and the back end are decoupled.
2. Different zkVMs can share the same proof.
3. Proofs can be reused, reducing repe��ve code.
Insights:
1. Why we verify one phase?

Verifica�on of different phases can be combined, which supports modular design of zkVMs.
2. Why zkVMs share this phase?

Different zkVMs share the same constraint genera�on algorithm.
First to formalize the cryptographic security proper�es of zkVMs, including soundness and completeness.
Only two previous zkVMs verified: Cairo VM and Aleo VM (not open source).
They do not realize the difference between maintenance of soundness and completeness and the
correctness of the constraint genera�on algorithm.

Exis�ng verifica�on works on zkVMs are hard-coded to their memory se�ngs and machine types,
which have two demerits:
1. It is hard to port them to other zkVMs. 2. The correctness proof is not reusable during development.

We parameterize the ISA (Instruc�on Set Architecture),
and define seman�cs-level constraints based on these
parameterized defini�ons.
Then, we verify the parameterized
constraint genera�on algorithm.
Two instan�a�on examples: Cairo VM and a simplified zkEVM.

Our parameterized
framework

CPU constraints
Random accessible data
(RAD) constraints
Permuta�on constraint

The two auxiliary registers are used to store the top
two values in the stack. In this way, the stack can be
seen as a part of the random accessible data (RAD), as
is implemented in the PSE zkEVM.

Evalua�on

Some zkVMs such as the Cairo VM and Aleo VM,
support built-in field elements.
For these zkVMs, seman�cs-level constraints are
already constraints on field-element constraints.

The parameterized proof of soundness and completeness contains about 3800 and 2980 lines of code respec�vely.

From correctness of the constraint genera�on algorithm
to the maintenance of soundness and completeness

I will show you the existence of m
without le�ng you know m.

I will show you the existence of w
without le�ng you know w.

2.mstore �mestamp: 1; op: write; address: r0; value: r1

4.mload

3.jump

1.add pc' == pc + 1; r0' == r0 + r1; r1' == r1

pc' == r0; r0' == r0; r1' == r1

pc' == pc + 1; r1' == r1

pc' == pc + 1; r0' == r0; r1' == r1

�mestamp: 2; op: read; address: r0; value: r0'

�mestamp1 op1 address1 value1

�mestamp2 op2 address2 value2

program CPU constraints Random access records Sorted random access records
If address2 == address1 and op2 == read,
�mestamp2 > �mestamp1 and value2 == value1
If not, address2 > address1 and if op2 == read,
value2 == ini�al value of address2

......

RAD Constraints

Permuta�on Constraint

no

no

Constraint genera�on algorithm
verified in our framework!

Example

: program, public part of the ini�al state, ini�al pc & output(last state)
: set of all valid

: private input
: private part of the ini�al state & a valid execu�on trace
: private part of the ini�al state & valid seman�cs-level constraints

: proof space

The maintenance of soundness and completeness:
If there is a pair of algorithms , that sa�sfy soundness and completeness
for the set , there exists a corresponding pair of algorithms , that sa�sfy
soundness and completeness for the set .

Correctness of the constraint genera�on algorithm:

Formal verifica�on of
Cairo VM Instan�a�on Soundness Completeness

Using our parameterized
framework 1092 lines of Coq code No extra efforts! No extra efforts!

Not using our
parameterized framework / 3266 lines of Lean code Not proved

