
Source program Machine Code Semantics-level
constraints

Field-element
constraints Proof

Front end Back end (Plonkish/Halo2, R1CS...)

Zero-knowledge proof (ZKP)

Proof generation workflow of zkVMs

Motivation

Approach

Contribution

Youwei Zhong @ SPLASH SRC 2024
zhongyouwei@sjtu.edu.cn

A Parameterized Framework for the Supervised by Qinxiang Cao
and Yuncong Hu
caoqinxiang@sjtu.edu.cn
huyuncong@sjtu.edu.cn

Formal Verification of Zero-Knowledge Virtual Machines

Zero-knowledge proofs allow one party
(prover) convince another party (verifier)
that some given statement is true, without
revealing anything beyond the mere fact of
that statement's truth.

Prover Verifier

I know an m such that
SHA256(m)=101101...

Proof

F: function
x: input

w: witness

F: function
x: input

Valid input:
Completeness:
'An honest prover's proof can always pass the verifier's check.'

Soundness:
'A malicious prover's proof should be declined with high
probability.'

Zero-Knowledge Virtual Machine (zkVM):
a kind of virtual machine based on ZKP that allows for verifiable computation

Solidity,
Rust,
etc.

Bytecode or
assembly code,
determined by

the ISA

Prover Verifier

I know a w such that
F(x,w)=1

Proof:

Parameterized
machine state

Instantiation of
machine state

Parameterized
instruction set A subset of EVM bytecode

CPU

random accessible data

pc, two auxiliary registers,
sp

r/w records in
memory and stack

An instantiation of a
simplified zkEVM
in our framework

Parameterized
semantics

Semantics of
EVM bytecode

e.g. A severe bug in Aztec VM's verifier breaks soundness, resulting in millions of dollars worth of cryptocurrency getting stolen.
Current zkVMs are susceptible to bugs and vulnerabilities.

First to put forward a parameterized framework for the formal verification of zkVMs.
Features:
1. Verification of the front end and the back end are decoupled.
2. Different zkVMs can share the same proof.
3. Proofs can be reused, reducing repetitive code.
Insights:
1. Why we verify one phase?

Verification of different phases can be combined, which supports modular design of zkVMs.
2. Why zkVMs share this phase?

Different zkVMs share the same constraint generation algorithm.
First to formalize the cryptographic security properties of zkVMs, including soundness and completeness.
Only two previous zkVMs verified: Cairo VM and Aleo VM (not open source).
They do not realize the difference between maintenance of soundness and completeness and the
correctness of the constraint generation algorithm.

Existing verification works on zkVMs are hard-coded to their memory settings and machine types,
which have two demerits:
1. It is hard to port them to other zkVMs. 2. The correctness proof is not reusable during development.

We parameterize the ISA (Instruction Set Architecture),
and define semantics-level constraints based on these
parameterized definitions.
Then, we verify the parameterized
constraint generation algorithm.
Two instantiation examples: Cairo VM and a simplified zkEVM.

Our parameterized
framework

CPU constraints
Random accessible data
(RAD) constraints
Permutation constraint

The two auxiliary registers are used to store the top
two values in the stack. In this way, the stack can be
seen as a part of the random accessible data (RAD), as
is implemented in the PSE zkEVM.

Evaluation

Some zkVMs such as the Cairo VM and Aleo VM,
support built-in field elements.
For these zkVMs, semantics-level constraints are
already constraints on field-element constraints.

The parameterized proof of soundness and completeness contains about 3800 and 2980 lines of code respectively.

From correctness of the constraint generation algorithm
to the maintenance of soundness and completeness

I will show you the existence of m
without letting you know m.

I will show you the existence of w
without letting you know w.

2.mstore timestamp: 1; op: write; address: r0; value: r1

4.mload

3.jump

1.add pc' == pc + 1; r0' == r0 + r1; r1' == r1

pc' == r0; r0' == r0; r1' == r1

pc' == pc + 1; r1' == r1

pc' == pc + 1; r0' == r0; r1' == r1

timestamp: 2; op: read; address: r0; value: r0'

timestamp1 op1 address1 value1

timestamp2 op2 address2 value2

program CPU constraints Random access records Sorted random access records
If address2 == address1 and op2 == read,
timestamp2 > timestamp1 and value2 == value1
If not, address2 > address1 and if op2 == read,
value2 == initial value of address2

......

RAD Constraints

Permutation Constraint

no

no

Constraint generation algorithm
verified in our framework!

Example

: program, public part of the initial state, initial pc & output(last state)
: set of all valid

: private input
: private part of the initial state & a valid execution trace
: private part of the initial state & valid semantics-level constraints

: proof space

The maintenance of soundness and completeness:
If there is a pair of algorithms , that satisfy soundness and completeness
for the set , there exists a corresponding pair of algorithms , that satisfy
soundness and completeness for the set .

Correctness of the constraint generation algorithm:

Formal verification of
Cairo VM Instantiation Soundness Completeness

Using our parameterized
framework 1092 lines of Coq code No extra efforts! No extra efforts!

Not using our
parameterized framework / 3266 lines of Lean code Not proved

